AKT1: AKT1 Protein | AKT1 Antibody

AKT1 Gene family

AKT1 Background

v-akt murine thymoma viral oncogene homolog 1 (AKT1), or protein kinase B-alpha (PKB-ALPHA) is a serine-threonine protein kinase, belonging to the Protein Kinase Superfamily. AKT1 is a major mediator of the responses to insulin, insulin-like growth factor 1 (IGF1), and glucose. AKT1 also plays a key role in the regulation of both muscle cell hypertrophy and atrophy. AKT1 activity is required for physiologic cardiac growth in response to IGF1 stimulation or exercise training. In contrast, AKT1 activity was found to antagonize pathologic cardiac growth that occurs in response to endothelin 1 stimulation or pressure overload. AKT1 selectively promotes physiological cardiac growth while AKT2 selectively promotes insulin-stimulated cardiac glucose metabolism. AKT1 deletion prevented tumor initiation as well as tumor progression, coincident with decreased Akt signaling in tumor tissues. AKT1 is the primary Akt isoform activated by mutant K-ras in lung tumors, and that AKT3 may oppose AKT1 in lung tumorigenesis and lung tumor progression. A number of separate studies have implicated AKT1 as an inhibitor of breast epithelial cell motility and invasion. AKT1 may have a dual role in tumorigenesis, acting not only pro-oncogenically by suppressing apoptosis but also anti-oncogenically by suppressing invasion and metastasis.

Reference for AKT1

  • Hollander MC, et al. (2011) Akt1 deletion prevents lung tumorigenesis by mutant K-ras. Oncogene. 30(15): 1812-21.
  • Devaney JM, et al. (2011) AKT1 polymorphisms are associated with risk for metabolic syndrome. Hum Genet. 129(2): 129-39.
  • Dillon RL, et al. (2010) Distinct biological roles for the akt family in mammary tumor progression. Cancer Res. 70(11): 4260-4.
  • Toker A, et al. (2006) Akt signaling and cancer: surviving but not moving on. Cancer Res. 66(8): 3963-6.
  • Muslin AJ, et al. (2006) Role of Akt in cardiac growth and metabolism. Novartis Found Symp. 274: 118-26.

AKT1 Protein

AKT1 protein function

AKT1 is one of 3 closely related serine/threonine-protein kinases (AKT1, AKT2 and AKT3) called the AKT kinase, and which regulate many processes including metabolism, proliferation, cell survival, growth and angiogenesis. This is mediated through serine and/or threonine phosphorylation of a range of downstream substrates. Over 100 substrate candidates have been reported so far, but for most of them, no isoform specificity has been reported. AKT is responsible of the regulation of glucose uptake by mediating insulin-induced translocation of the SLC2A4/GLUT4 glucose transporter to the cell surface. Phosphorylation of PTPN1 at 'Ser-50' negatively modulates its phosphatase activity preventing dephosphorylation of the insulin receptor and the attenuation of insulin signaling. Phosphorylation of TBC1D4 triggers the binding of this effector to inhibitory 14-3-3 proteins, which is required for insulin-stimulated glucose transport. AKT regulates also the storage of glucose in the form of glycogen by phosphorylating GSK3A at 'Ser-21' and GSK3B at 'Ser-9', resulting in inhibition of its kinase activity. Phosphorylation of GSK3 isoforms by AKT is also thought to be one mechanism by which cell proliferation is driven. AKT regulates also cell survival via the phosphorylation of MAP3K5 (apoptosis signal-related kinase). Phosphorylation of 'Ser-83' decreases MAP3K5 kinase activity stimulated by oxidative stress and thereby prevents apoptosis. AKT mediates insulin-stimulated protein synthesis by phosphorylating TSC2 at 'Ser-939' and 'Thr-1462', thereby activating mTORC1 signaling and leading to both phosphorylation of 4E-BP1 and in activation of RPS6KB1. AKT is involved in the phosphorylation of members of the FOXO factors (Forkhead family of transcription factors), leading to binding of 14-3-3 proteins and cytoplasmic localization. In particular, FOXO1 is phosphorylated at 'Thr-24', 'Ser-256' and 'Ser-319'. FOXO3 and FOXO4 are phosphorylated on equivalent sites. AKT has an important role in the regulation of NF-kappa-B-dependent gene transcription and positively regulates the activity of CREB1 (cyclic AMP (cAMP)-response element binding protein). The phosphorylation of CREB1 induces the binding of accessory proteins that are necessary for the transcription of pro-survival genes such as BCL2 and MCL1. AKT phosphorylates 'Ser-454' on ATP citrate lyase (ACLY), thereby potentially regulating ACLY activity and fatty acid synthesis. Activates the 3B isoform of cyclic nucleotide phosphodiesterase (PDE3B) via phosphorylation of 'Ser-273', resulting in reduced cyclic AMP levels and inhibition of lipolysis. Phosphorylates PIKFYVE on 'Ser-318', which results in increased PI(3)P-5 activity. The Rho GTPase-activating protein DLC1 is another substrate and its phosphorylation is implicated in the regulation cell proliferation and cell growth. AKT plays a role as key modulator of the AKT-mTOR signaling pathway controlling the tempo of the process of newborn neurons integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation. Signals downstream of phosphatidylinositol 3-kinase (PI(3)K) to mediate the effects of various growth factors such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF), insulin and insulin-like growth factor I (IGF-I). AKT mediates the antiapoptotic effects of IGF-I. Essential for the SPATA13-mediated regulation of cell migration and adhesion assembly and disassembly. May be involved in the regulation of the placental development. Phosphorylates STK4/MST1 at 'Thr-120' and 'Thr-387' leading to inhibition of its: kinase activity, nuclear translocation, autophosphorylation and ability to phosphorylate FOXO3. Phosphorylates STK3/MST2 at 'Thr-117' and 'Thr-384' leading to inhibition of its: cleavage, kinase activity, autophosphorylation at Thr-180, binding to RASSF1 and nuclear translocation. Phosphorylates SRPK2 and enhances its kinase activity towards SRSF2 and ACIN1 and promotes its nuclear translocation. Phosphorylates RAF1 at 'Ser-259' and negatively regulates its activity. Phosphorylation of BAD stimulates its pro-apoptotic activity. Phosphorylates KAT6A at 'Thr-369' and this phosphorylation inhibits the interaction of KAT6A with PML and negatively regulates its acetylation activity towards p53/TP53.; AKT1-specific substrates have been recently identified, including palladin (PALLD), which phosphorylation modulates cytoskeletal organization and cell motility; prohibitin (PHB), playing an important role in cell metabolism and proliferation; and CDKN1A, for which phosphorylation at 'Thr-145' induces its release from CDK2 and cytoplasmic relocalization. These recent findings indicate that the AKT1 isoform has a more specific role in cell motility and proliferation. Phosphorylates CLK2 thereby controlling cell survival to ionizing radiation.

AKT1 protein expression

Tissue specificity

Expressed in prostate cancer and levels increase from the normal to the malignant state (at protein level). Expressed in all human cell types so far analyzed. The Tyr-176 phosphorylated form shows a significant increase in expression in breast cancers during the progressive stages i.e. normal to hyperplasia (ADH), ductal carcinoma in situ (DCIS), invasive ductal carcinoma (IDC) and lymph node metastatic (LNMM) stages.

AKT1 protein sequence

This sequence information is just for reference only.From Uniport

  • Length
    480.00
  • Mass (Da)
    55.00

AKT1 Antibody

There are 1 AKT1 antibodies which are validated in multiple tissues with various applications, including WB, ELISA, ICC/IF, IP. There are 1 AKT1 antibody for WB, 1 AKT1 antibody for ELISA, 1 AKT1 antibody for ICC/IF, 1 AKT1 antibody for IP. Among all these AKT1 antibodies, there are 1 anti-AKT1 rabbit polyclonal antibodies . All the AKT1 anbodies are produced in house and all are in stock. AKT1 antibody customerized service is available.

AKT1 Gene

AKT1 gene / cDNA is a protein-coding gene which located on 14q32.33. The AKT1 gene is conserved in chimpanzee, Rhesus monkey, dog, cow, mouse, rat, chicken, zebrafish, C.elegans, and frog.220 organisms have orthologs with human gene AKT1.